Let \(A\) be a rational matrix with \(n\) rows and \(m\) columns, \(rhs\) a (column) vector of dimension \(n\) and \(obj\) is a (row) vector of dimension \(m\).
We consider the Linear Programming problem
maximize/minimize \(obj\cdot{x}\), subject to \(Ax \geq rhs\).
‣ LRS_LPSolveMax ( A, rhs, obj ) | ( function ) |
‣ LRS_LPSolveMin ( A, rhs, obj ) | ( function ) |
If the problem has a solution then the function returns the pair [ x, val ]
, where \(x\) is the vector of dimension \(m\) which realizes the optimum value \(val\). If the problem is not feasible or not bounded then the function returns [ fail, "No feasible solution" ]
or [ fail, "Unbounded solution" ]
and the respective info warning will be given.
‣ LRS_Export2FreeMPS ( A, rhs, obj, filename ) | ( function ) |
This function exports the LP problem to the free MPS format. This format is used by several more sophisticated LP solvers, for example the GNU Linear Programming Kit GLPK
. See the documentation glpk-refman.pdf for detailed description of this format. Moreover, GLPK
can be used to convert to problem data in several other formats.
‣ LRS_MaxWeightMatching ( m ) | ( function ) |
‣ LRS_MinWeightMatching ( m ) | ( function ) |
Let m be a square matrix over the rationals. These commands return the solution of the assigment problem of maximizing/minimizing the objective function \(\sum_{i,j} X_{i,j} m_{i,j}\) with \(0\leq X_{i,j}\leq 1\).
gap> A := [ [ 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2 ], [ -1, -1, 0, -1, -2, -1, -1, -1, 0, -1, -1, 0 ], > [ 5, 0, 0, 3, -1, -1, 1, 1, 1, -3, 0, -2 ], [ 5, 0, 0, 3, -1, -1, 1, 1, 1, -3, 0, -2 ], > [ -9, 1, -1, 0, 0, 0, 3, 0, 0, -1, -1, 2 ], [ -9, 1, -1, 0, 0, 0, 3, 0, 0, -1, -1, 2 ], > [ 12, 2, -2, 0, 0, 0, 0, 0, 0, 4, 1, -2 ], [ -11, -1, 0, 1, 2, 1, 1, 1, -2, -3, 0, 0 ], > [ 3, -2, 2, 0, 0, 0, 3, 0, 0, 3, 0, 0 ], [ 10, 0, 0, -7, 0, 1, -2, 1, 0, 2, -1, -1 ], > [ 10, 0, 0, -7, 0, 1, -2, 1, 0, 2, -1, -1 ], [ -10, 0, 0, 3, -1, -1, -2, 1, -1, 6, 0, 2 ], > [ -10, 0, 0, 3, -1, -1, -2, 1, -1, 6, 0, 2 ], [ 35, 0, 0, 6, -2, 2, 3, 0, -2, 3, 0, 0 ], > [ -5, 0, 0, -3, 1, 1, -1, -1, 0, 3, 0, 0 ], [ -5, 0, 0, -3, 1, 1, -1, -1, 0, 3, 0, 0 ], > [ -15, 0, 0, 8, 2, 0, -3, 0, 0, -7, -1, 0 ], [ 11, 1, 2, 7, 0, -1, -1, -1, 0, 3, 0, 0 ], > [ 24, -1, -2, 8, 2, 0, 0, 0, 2, 8, -1, 0 ], [ -19, 1, 0, 6, -2, 2, -3, 0, 0, -3, 0, 0 ], > [ 16, 1, 0, -6, 2, -2, 0, 0, -2, 0, 0, 0 ], [ 0, 0, 0, -8, -2, 0, 0, 0, 2, 0, 0, 2 ], > [ 9, -1, 0, 0, 0, 0, -3, 0, 0, 1, 1, 0 ], [ 24, -1, -2, 0, 0, 0, 0, 0, 0, -8, 1, 2 ], > [ 36, 1, 2, 0, 0, 0, 0, 0, 0, -4, -1, 0 ], [ -45, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, -2 ] ];; gap> rhs := [ -1, -23, -45, -45, -231, -231, -252, -253, -483, -770, -770, -990, -990, -1035, -1035, > -1035, -1265, -1771, -2024, -2277, -3312, -3520, -5313, -5544, -5796, -10395 ];; gap> obj := [ 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2 ];; gap> LRS_LPSolveMax(A,rhs,obj); [ [ 4163/16, -2967/4, -2967/4, 37007/112, 20217/14, 24403/16, -14053/16, 15847/4, 9177/4, 3657/8, -31119/4, -2577/2 ], 551 ]
gap> ma:=RandomMat(5,5); [ [ 0, 2, 1, 0, -1 ], [ 2, -1, 2, 3, 4 ], [ -1, 0, -4, 2, 2 ], [ 0, 3, 2, 3, -4 ], [ 5, 0, 0, 1, -1 ] ] gap> LRS_MinWeightMatching(ma); [ [ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 1 ], [ 0, 0, 0, 1, 0 ] ], -8 ]
generated by GAPDoc2HTML